Bayesian optimization with hidden constraints for aircraft design - X-OAD -eXtended-Overall Aircraft Design
Article Dans Une Revue Structural and Multidisciplinary Optimization Année : 2024

Bayesian optimization with hidden constraints for aircraft design

Optimisation Bayésienne avec des contraintes cachées pour la conception avion

Résumé

A challenge in aircraft design optimization is the presence of non-computable, so-called hidden, constraints that do not return a value in certain regions of the design space. In this paper, we present a novel method to handle hidden constraints in aircraft conceptual design using Bayesian optimization. The method entails modifying a portion of the acquisition function of a Bayesian optimization formulation using supervised machine learning classifiers. The proposed approach reduces the effect of classifiers on exploration, therefore allowing the optimization algorithm to consider regions of the design space where previous information is not available. In addition, we consider different classifiers for handling hidden constraints. We demonstrate the proposed method using two simulation-based aircraft design optimization problems related to landing gear sizing and aircraft performance. The obtained results show an improvement of the objective function with fewer function evaluations.
Fichier principal
Vignette du fichier
s00158-024-03833-8.pdf (2.12 Mo) Télécharger le fichier
Origine Publication financée par une institution
licence
Copyright (Tous droits réservés)

Dates et versions

hal-04673615 , version 1 (20-08-2024)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Ali Tfaily, Youssef Diouane, Nathalie Bartoli, Michael Kokkolaras. Bayesian optimization with hidden constraints for aircraft design. Structural and Multidisciplinary Optimization, 2024, 67 (7), pp.123. ⟨10.1007/s00158-024-03833-8⟩. ⟨hal-04673615⟩
104 Consultations
26 Téléchargements

Altmetric

Partager

More