
HAL Id: hal-03525697
https://univ-montpellier3-paul-valery.hal.science/hal-03525697

Submitted on 31 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Long Journey of CICA-17 Quinoa Variety to Salinity
Conditions in Egypt: Mineral Concentration in the

Seeds
Juan A González, Leonardo Hinojosa, María I Mercad, José-Luis

Fernández-Turiel, Didier Bazile, Gracie I Ponessa, Sayed Eisa, Daniela A
González, Marta Rejas, Sayed Hussin, et al.

To cite this version:
Juan A González, Leonardo Hinojosa, María I Mercad, José-Luis Fernández-Turiel, Didier Bazile, et
al.. A Long Journey of CICA-17 Quinoa Variety to Salinity Conditions in Egypt: Mineral Concentra-
tion in the Seeds. Plants, 2021, 10 (2), pp.407. �10.3390/plants10020407�. �hal-03525697�

https://univ-montpellier3-paul-valery.hal.science/hal-03525697
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


plants

Article

A Long Journey of CICA-17 Quinoa Variety to Salinity
Conditions in Egypt: Mineral Concentration in the Seeds

Juan A. González 1,*, Leonardo Hinojosa 2 , María I. Mercado 3 , José-Luis Fernández-Turiel 4 ,
Didier Bazile 5,6 , Graciela I. Ponessa 3, Sayed Eisa 7 , Daniela A. González 8 , Marta Rejas 4 , Sayed Hussin 7,
Emad H. Abd El-Samad 9 , Ahmed Abdel-Ati 10 and Mohamed E. A. Ebrahim 11

����������
�������

Citation: González, J.A.; Hinojosa, L.;

Mercado, M.I.; Fernández-Turiel, J.-L.;

Bazile, D.; Ponessa, G.I.; Eisa, S.;

González, D.A.; Rejas, M.; Hussin, S.;

et al. A Long Journey of CICA-17

Quinoa Variety to Salinity Conditions

in Egypt: Mineral Concentration in

the Seeds. Plants 2021, 10, 407.

https://doi.org/10.3390/plants1002

0407

Academic Editor: Adriano Sofo

Received: 15 January 2021

Accepted: 16 February 2021

Published: 22 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Fundación Miguel Lillo, Instituto de Ecología, Comportamiento y Conservación, T4000 Tucumán, Argentina
2 Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam,

1012 WX Amsterdam, The Netherlands; l.a.hinojosasanchez2@uva.nl
3 Fundación Miguel Lillo, Instituto de Morfología Vegetal, T4000 Tucumán, Argentina;

mimercado@lillo.org.ar (M.I.M.); giponessa@lillo.org.ar (G.I.P.)
4 Geosciences Barcelona, CSIC, 08028 Barcelona, Spain; jlfernandez@geo3bcn.csic.es (J.-L.F.-T.);

mrejas@geo3bcn.csic.es (M.R.)
5 CIRAD, UMR SENS, 34398 Montpellier, France; didier.bazile@cirad.fr
6 SENS, CIRAD, IRD, University Paul Valery Montpellier 3, 34090 Montpellier, France
7 Faculty of Agriculture, Ain Shams University, Cairo 11672, Egypt; sayed_eisa@hotmail.com (S.E.);

sayed_hussin@hotmail.com (S.H.)
8 Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), Consejo Nacional de Investigaciones Científicas

y Técnicas (CONICET), T4000 Tucumán, Argentina; danigonz37@gmail.com
9 Vegetable Research Department, Agricultural & Biological Research Division, National Research Centre,

Giza 12611, Egypt; emadhassanein@hotmail.com
10 Plant Production Department, Ecology and Dry Land Agriculture Division, Desert Research Center,

Cairo 11753, Egypt; dr.abdelati@gmail.com
11 General Organization for Agriculture Equalization Fund, Giza 12511, Egypt; mohamedelsawalhy@yahoo.com
* Correspondence: jagonzalez@lillo.org.ar

Abstract: Quinoa may be a promising alternative solution for arid regions, and it is necessary to
test yield and mineral accumulation in grains under different soil types. Field experiments with
Chenopodium quinoa (cv. CICA-17) were performed in Egypt in non-saline (electrical conductivity,
1.9 dS m−1) and saline (20 dS m−1) soils. Thirty-four chemical elements were studied in these crops.
Results show different yields and mineral accumulations in the grains. Potassium (K), P, Mg, Ca, Na,
Mn, and Fe are the main elements occurring in the quinoa grains, but their concentrations change
between both soil types. Besides, soil salinity induced changes in the mineral pattern distribution
among the different grain organs. Sodium was detected in the pericarp but not in other tissues.
Pericarp structure may be a shield to prevent sodium entry to the underlying tissues but not for
chloride, increasing its content in saline conditions. Under saline conditions, yield decreased to near
47%, and grain sizes greater than 1.68 mm were unfavored. Quinoa may serve as a complementary
crop in the marginal lands of Egypt. It has an excellent nutrition perspective due to its mineral
content and has a high potential to adapt to semi-arid and arid environments.

Keywords: Chenopodium quinoa Wild.; salinity; mineral concentration; food; extreme environment

1. Introduction

Climate change is a reality, and we already see today its effects on the physiology,
growth, and yield of field crops. For instance, the frequency of heatwaves has increased in
large areas of the world, and precipitation changes have become more unpredictable [1].
Besides, the climate change effects and the bad agronomic practices have increased the
saline soil areas. Salinity limits crop yields due to a reduction in photosynthesis, respiration,
and protein synthesis. Around 7% of all land area in the world (1000 million ha) is affected
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by soil salinity, and more than 77 million ha from the arable area are affected by high salt
contents [2,3].

Nevertheless, the main problem is that the principal crops are using plant species
adapted to “old climatic conditions”. Hence, it is necessary to look for alternative crops or
“new crops” to face the “new climatic conditions”. In this sense, it is crucial to consider
some species that grew during millennia in mountain regions under extreme environ-
mental conditions. Mountain plants, especially those adapted and cultivated in different
altitudinal levels, can be crucial due to the gene pool that allowed these adaptations. In
this scenario, quinoa (Chenopodium quinoa Willd.), which has grown throughout the Andes
in South America for 5000 to 7000 years [4,5], can be considered a good option. During a
long period of cultivation by the Aymaras and Inca populations, this crop was grown in
different ecological zones, from sea level, in Chilean varieties [6], to 2000 to 4000 m above
sea level (a.s.l.) along the Andes. Quinoa presents a C3 photosynthetic pathway accord-
ing to anatomic and carbon isotope discrimination studies [6], with high photosynthetic
assimilation and an intrinsic water use efficiency (iWUE) [7,8].

Several studies confirmed quinoa as an important source of nutritional components
such as essential amino acids, fatty acids, minerals, soluble sugars, and bioactive com-
ponents [9–11]. Furthermore, numerous reports in the field or lab conditions showed
that quinoa is a species with high resilience to abiotic stress, including salinity, drought,
high temperature, and ultraviolet B (UV-B) radiation [12–14]. Quinoa can tolerate very
high salinity concentrations, producing a complete life cycle even at water salinities of
500–750 mM NaCl [15–17]. Thus, it can be grown in very marginal environments, for
example, in North Africa, where soil salinization and drought are serious issues. The high
nutritional value maintenance under different stresses makes quinoa an excellent crop to
grow in the aforementioned marginal environments and face climate change. This quinoa
tolerance to edaphic and harsh climatic conditions is related to this crop’s high diversity
along the Andes. In effect, there are more than 16,000 quinoa accessions stored in different
seed banks in 30 countries, most of which are concentrated in Bolivia and Peru [18–20].
These accessions include the five ecotypes classified by Tapia (2015) [21]: (i) Valley quinoa;
(ii) Altiplano quinoa; (iii) Salar quinoa; (iv) Sea level quinoa; and (v) Subtropical quinoa.
Quinoa accessions of the different ecotypes are considered multipurpose plants: the seeds
and leaves can be used as food, the biomass can be used as animal feed or as a cover crop,
the colorants and the saponin content can be used in pharmaceutical and agroindustry, and
plantings can serve as a phytoremediation tool for environmental cleanup [22–24].

Tapia’s classification accepts an implicit fact: each ecotype can thrive in the environ-
ment in which it was adapted. However, quinoa has been introduced at higher latitudes as
a complementary crop with good adaptation [25]. Currently, quinoa is cultivated and ex-
perimented on in almost 130 countries [19], including The United States [26,27], India [28],
Italy [29], and Egypt [16], among others. Quinoa adaptation’s success is due to its high
plasticity to reach places that differ from its original location managing the sowing dates,
taking advantage of the environmental offer (basically temperature and light). One of the
perfect examples of quinoa plasticity is the CICA-17 variety. It was selected at 3800 m a.s.l.
in Cuzco-Peru from the local variety Amarilla de Maranganí at Centro de Investigaciones
de Cultivos Andinos (CICA, Universidad Nacional de San Antonio Abad del Cusco, Peru).
CICA-17 belongs to the Altiplano ecotype, and it is tolerant to cold temperatures, low
precipitation, and high salinity conditions. CICA-17 quinoa was introduced in northwest-
ern Argentina in 1996–1998 from the American and European Test of Quinoa conducted
by FAO-CIP [30]. Nowadays, CICA-17 is the variety most used by small producers in
Northwest Argentina and especially in arid high mountain valleys (above 2000 m a.s.l.)
where the climate is desert type. This variety has been cultivated in Egypt for ten years
because of its good adaptation to its marginal places. Egypt has a considerable extension
in arid, semi-arid, and marginal lands that constrain classical crop productivity. In this
scenario, quinoa is becoming a complementary crop of high nutritional value. CICA-17 has
a notable yield (near 2000 kg ha−1) either in mountain valleys at 2000 m a.s.l. as in lowlands
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at 200 m a.s.l. in northwestern Argentina and Egypt [7,31,32]. Eisa et al. (2018) [33] and
Ebrahim et al. [34] showed that the CICA-17 yield varied between 2000 and 3000 kg ha−1

in a marginal land at El-Fayoum oasis (Egypt).
CICA-17 quinoa can provide a new complementary crop for dry-saline lands. Still, it

makes it necessary to study the mineral concentrations in different grain and seed organs,
especially if different soil salinities influence these elements. Often, the mineral study in
quinoa was focused on Na and K because of their relationship with the osmotic adjustment
mechanisms that halophytes exhibit [35] or on the presence of a few minerals in different
quinoa seed organs, and the abrasion effect on the Ca and K pericarp content [36]. All
these approaches are essential to understand the physiological behavior of this promising
species. It is also relevant to understand how these mineral contents can vary in different
soils and climatic conditions in field conditions if quinoa is used as food in marginal lands.
Nowadays, it is known that quinoa’s seeds and leaves are a significant source of major
minerals (calcium, magnesium, potassium, phosphorus, sulfur, and sodium), trace elements
(iron, cobalt, zinc, copper, and manganese), and ultratrace elements (chromium, lithium,
arsenic, nickel, molybdenum, selenium, tin, and vanadium) and that their content varies
according to the genotype and the place where the cultivation is carried out [33,36–38].
However, the detailed mineral composition in different quinoa ecotypes is still scarce
and even more so is their spatial distribution. For example, Prado et al. [37] reported 18
minerals present in quinoa grains, while Konishi et al. [36] mentioned only six minerals.
Hence, we investigated the grain yield and size, the occurrence and content of minerals
and their spatial distribution in the different grain tissues, in the CICA-17 quinoa crop
grown in field conditions on soils with different salinity in the marginal lands of the Egypt.

2. Results
2.1. Soil and Irrigation Water Analysis

Electrical conductivity (EC) and organic matter, Cl, Na, Mg, K, Ca, SO4, and Fe contents
are higher in saline soil (Table 1). These parameters increase 43, 24, 17, 9, 2.6, 4, and 1.3%,
respectively, compared to the non-saline soil. Table 2 summarizes the water irrigation
analysis for both cases.

Table 1. Physical and chemical properties of soil samples collected in two saline and non-saline locations of Egypt.

Physical Properties

depth Soil
cm pH Sp 1

%
EC 2

dS m−1
DB 3

g cm−3
OM 4

%
CO3Ca

%
Sand

%
Silt
%

Clay
%

Textural
class

0–60
(non-saline) 8.0 66 2.1 1.51 1.25 2.8 30.0 58.0 12.0 silt loam

0–60
(saline) 8.2 75 26.0 1.92 0.58 0.3 33.3 53.2 3.5 silt loam

Chemical Properties

Na K Ca Mg Cl SO4
2 HCO−3 CO3

−2 Fe Mn
meq L−1

0–60
(non-saline) 7.8 0.6 11.7 4.3 6.5 13.5 4.45 0 4.36 5.29

0–60
(saline) 187.5 6.0 47.0 76.8 280.0 35 1.26 0 5.78 2.44

1 Sp: Saturation percentage; 2 EC: electrical conductivity; 3 DB: bulk density; 4 OM: Organic matter. Each value is the mean of n = 6 samples.

Table 2. Physical and chemical properties of irrigation water of saline and non-saline locations.

Location
EC pH Na+ K+ Ca2+ Mg2+ Cl− HCO−3 CO3−2 SO4−2

dS m−1 meq L−1

Non-saline 0.43 7.16 1.04 0.21 1.40 1.22 1.02 0.62 0.00 1.29
Saline 1.70 7.23 6.37 0.35 3.40 4.50 8.50 4.60 0.00 6.12
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2.2. Grain Yield

Soil salinity negatively affected grain yield. A reduction of close to 47% concerning
the grain yield was obtained in saline conditions compared to the non-saline one (Figure 1).
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Figure 1. Effect of non-saline and saline soils on grain yield (mean ± SE) on C. quinoa cv. CICA-17.
Different letters above columns indicate significant differences between means at p < 0.05, according
to the t-test.

2.3. Grain Weight and Sizes

The weight of 1000 seeds of CICA-17 quinoa decreased by 13% in saline conditions
compared to non-saline conditions (Figure 2). On the other hand, the grain size distribution
(A: <1.41 – >1.0 mm; B: <1.68 – >1.41 mm; C: <2.00 – >1.68 mm; D: ≥2 mm) showed that
the two largest grain sizes were unfavored by salinity conditions (Figure 3).
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Figure 2. Effects of non-saline and saline soils on the weight (mean ± SE) of 1000-seeds of C. quinoa
cv. CICA-17 plants. Significant differences between means (p ≤ 0.05) are indicated by different letters
above columns according to the t-test.

2.4. Mineral Content in Quinoa Grains

The most important mineral elements with biological activities showed two trends.
While phosphorus (P), magnesium (Mg), and sodium (Na) increased their content under
saline conditions, silicon (Si), potassium (K), calcium (Ca), and iron (Fe) contents decreased
(Table 3). The same increase or decrease were detected for the other elements except for Mn,
Cu, and Co, which exhibited the same behavior under non-saline and saline conditions.



Plants 2021, 10, 407 5 of 13Plants 2021, 10, x FOR PEER REVIEW 5 of 14 
 

 

 

Figure 3. Seeds diameter distribution of C. quinoa cv. CICA-17 obtained in non-saline and saline soils. All the differences 

were significant (p ≤ 0.05) according to the t-test. A: <1.41 – >1.0 mm; B: <1.68 – >1.41 mm; C: <2.00 – >1.68 mm; D: ≥2 mm. 

2.4. Mineral Content in Quinoa Grains 

The most important mineral elements with biological activities showed two trends. 

While phosphorus (P), magnesium (Mg), and sodium (Na) increased their content under 

saline conditions, silicon (Si), potassium (K), calcium (Ca), and iron (Fe) contents de-

creased (Table 3). The same increase or decrease were detected for the other elements ex-

cept for Mn, Cu, and Co, which exhibited the same behavior under non-saline and saline 

conditions.  

Table 3. Mineral content in quinoa grains (pericarps + seeds) under two saline conditions. Significant differences between 

means (p ≤ 0.05) are indicated by different letters behind the values according to the t-test. 

Element  
Non saline soil Saline soil Difference (%) 

Element 
Non saline soil Saline soil Difference (%) 

mg kg−1 dry weight  mg kg−1 dry weight  

Major elements Zr* 0.50 a 0.18 b 64.6 

K 9707.62 a 8226.40 b 15.3 Ni 0.48 b 0.30 a 37.3 

P 3334.57 b 3959.37 a 18.7 Pb* 0.46 a 0.11 b 75.8 

Mg 1443.81 b 1690.27 a 17.1 V* 0.29 a 0.11 b 61.1 

Ca 678.22 a 447.04 b 34.1 Ce* 0.09 a 0.05 b 41.8 

Na 44.17 b 267.00 a 504.5 As 0.06 a 0.03 b 50.5 

Minor or trace elements Ga* 0.06 a 0.02 b 64.9 

Fe 72.82 a 49.92 b 31.4 Sn 0.05 a 0.04 b 20.1 

Zn* 27.56 a 8.53 b 69.1 Ge* 0.05 a 0.02 b 58.1 

Mn 15.30 a 16.19 a 5.9 La* 0.04 a 0.03 b 40.5 

Cu 6.70 a 6.34 a 5.3 Li 0.04 b 0.05 a 19.1 

Co 0.06 a 0.06 a 2.8 Nb* 0.04 a 0.03 b 34.2 

Ultratrace elements Y* 0.04 a 0.02 b 39.0 

Si 9968.95 a 7837.06 b 21.4 Nd* 0.04 a 0.03 b 322.0 

Al 36.85 a 26.72 b 27.5 Cr 0.29 a 0.16 b 45.3 

Ti* 8.61 a 4.18 b 51.5 Pr* 0.01 a 0.01 b 33.5 

Sr 3.99 b 7.71 a 92.9 Th* 0.01 a 0.01 b 26.6 

Ba* 2.07 a 0.53 b 74.1 Sm* 0.01 a 0.01 b 35.8 

Rb* 0.96 b 1.42 a 47.2     

* Element detected for the first time in quinoa. 

  

 

      

     

     

     

     

     

     

     

     

     

     

 

2 b 

8 a 

22 c 

68 e 

8 a 
2 b 

Figure 3. Seeds diameter distribution of C. quinoa cv. CICA-17 obtained in non-saline and saline soils.
All the differences were significant (p ≤ 0.05) according to the t-test. A: <1.41 – >1.0 mm; B: <1.68 –
>1.41 mm; C: <2.00 – >1.68 mm; D: ≥2 mm.

Table 3. Mineral content in quinoa grains (pericarps + seeds) under two saline conditions. Significant differences between
means (p ≤ 0.05) are indicated by different letters behind the values according to the t-test.

Element
Non Saline

Soil Saline Soil Difference
(%) Element

Non Saline
Soil Saline Soil Difference

(%)
mg kg−1 dry weight mg kg−1 dry weight

Major elements Zr * 0.50 a 0.18 b 64.6
K 9707.62 a 8226.40 b 15.3 Ni 0.48 b 0.30 a 37.3
P 3334.57 b 3959.37 a 18.7 Pb * 0.46 a 0.11 b 75.8

Mg 1443.81 b 1690.27 a 17.1 V * 0.29 a 0.11 b 61.1
Ca 678.22 a 447.04 b 34.1 Ce * 0.09 a 0.05 b 41.8
Na 44.17 b 267.00 a 504.5 As 0.06 a 0.03 b 50.5

Minor or trace elements Ga * 0.06 a 0.02 b 64.9
Fe 72.82 a 49.92 b 31.4 Sn 0.05 a 0.04 b 20.1

Zn * 27.56 a 8.53 b 69.1 Ge * 0.05 a 0.02 b 58.1
Mn 15.30 a 16.19 a 5.9 La * 0.04 a 0.03 b 40.5
Cu 6.70 a 6.34 a 5.3 Li 0.04 b 0.05 a 19.1
Co 0.06 a 0.06 a 2.8 Nb * 0.04 a 0.03 b 34.2

Ultratrace elements Y * 0.04 a 0.02 b 39.0
Si 9968.95 a 7837.06 b 21.4 Nd * 0.04 a 0.03 b 322.0
Al 36.85 a 26.72 b 27.5 Cr 0.29 a 0.16 b 45.3
Ti * 8.61 a 4.18 b 51.5 Pr * 0.01 a 0.01 b 33.5
Sr 3.99 b 7.71 a 92.9 Th * 0.01 a 0.01 b 26.6

Ba * 2.07 a 0.53 b 74.1 Sm * 0.01 a 0.01 b 35.8
Rb * 0.96 b 1.42 a 47.2

* Element detected for the first time in quinoa.

2.5. Mineral Spatial Distribution on Quinoa Grains

Quinoa seed has different tissues (Figure 4). Using SEM-EDX analysis, we found
that only the pericarp accumulated sodium in both non-saline and saline soils. Grains
developed under saline conditions showed 6.3 times greater sodium content than those
detected under non-saline conditions (Table 4, Figure 5). Chlorine, P, and Br also increased
significantly in pericarp in saline conditions. By contrast, soil salinity led to a decrease
in Ca, Al, Fe, Cu, and Si. Meanwhile, potassium was located mainly in the pericarp
without significant differences due to the soil salinity condition. In the endosperm and the
perisperm, the K content increased in saline soil (2.5 and 2.2 times, respectively) while its
concentration was more significant (2.7 times) in the embryo in non-saline soil. The other
elements studied did not change significantly.
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perisperm; Emb, embryo with a radicle-hypocotyl axis (r) and cotyledon (co).

Table 4. SEM-EDX comparative mineral relative percentages on quinoa grain tissues cultivated under non-saline and
saline conditions (mean ± SD; n.d., not detected). Significant differences between means (p ≤ 0.05) are indicated by
different letters behind the values according to the t-test. Comparisons were made between identical tissues under the two
salinity conditions.

Mineral Pericarp
Embryo

Cotyledon
Mesophyll

Endosperm Perisperm

Non-Saline Saline Non-
Saline Saline Non-

Saline Saline Non-Saline Saline

C 51.89 ± 3.2 a 50.5 ± 3.7 a 61.32 ±
5.70 a 57.37 ± 2.40 a 61.64 ±

1.40 a 66.17 ± 5.3 a 68.60 ± 2.7 a 74.23 ± 7.10 a

O 39.96 ± 1.5 a 41.4 ± 1.00 a 26.51 ±
5.00 a 30.70 ± 1.40 a 25.76 ±

1.40 a 22.41 ± 3.6 a 26.30 ± 2.1 a 23.89 ± 4.90 a

N n.d. n.d. 9.75 ±
0.30 a 10.53 ± 0.10 a 11.46 ±

0.05 a 7.31 ± 1.3 b 4.97 ± 0.01 a 2.50 ± 0.70 b

Na 0.08 ± 0.04 b 0.5 ± 0.03 a n.d. n.d. n.d. N.d. n.d. n.d.

Mg 0.23 ± 0.10 a 0.34 ± 0.10 a 0.38 ±
0.07 a 0.39 ± 0.04 a 0.16 ±

0.03 b 0.38 ± 0.04 a 0.01 ± 0.01 a 0.02 ± 0.01 a

Si 0.26 ± 0.10 a 0.21 ± 0.10 b n.d. n.d. n.d. n.d. n.d. n.d.

P 0.06 ± 0.01 b 0.08 ± 0.04 a 1.01 ±
0.07 a 0.65 ± 0.10 b 0.17 ±

0.01 b 1.23 ± 0.05 a n.d. n.d.

S 0.19 ± 0.07 a 0.22 ± 0.2 a 0.45 ±
0.07 a 0.15 ± 0.01 b 0.11 ±

0.01 b 0.69 ± 0.1 a 0.02 ± 0.01 a 0.06 ± 0.01 a

Cl 0.60 ± 0.10 b 1.24 ± 0.40 a n.d. 0.02 ± 0.01 a 0.07 ±
0.02 a n.d. b 0.08 ± 0.03 b 0.30 ± 0.20 a

K 6.18 ± 10 a 5.46 ± 3.20 a 0.59 ±
0.05 a 0.22 ± 0.01 b 0.52 ±

0.07 b 1.31 ± 0.10 a 0.12 ± 0.10 b 0.26 ± 0.05 a

Ca 0.31 ± 0.20 a 0.16 ± 0.10 b n.d. n.d. 0.12 ±
0.01 a 0.04 ± 0.01 b n.d. n.d.

Fe 0.08 ± 0.05 a 0.06 ± 0.04 b n.d. 0.01 ± 0.00 a n.d. n.d. n.d. n.d.
Br 0.09 ± 0.09 b 0.13 ± 0.10 a n.d. n.d. n.d. n.d. n.d. n.d.
Al 0.05 ± 0.04 a 0.03 ± 0.03 b n.d. n.d. n.d. n.d. n.d. n.d.
Cu 0.05 ± 0.04 a N.d. b n.d. n.d. n.d. n.d. n.d. n.d.
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Figure 5. Spatial distribution of elements analyzed by SEM-EDX in grain longitudinal medial
sections of C. quinoa cv. CICA-17, cultivated under non-saline (A–K) and saline (L–V) conditions. Ep,
episperm; En, endosperm; P, perisperm; Pe, pericarp; Emb, embryo with the radicle-hypocotyl axis
(r) and cotyledon (co). Arrowhead indicates the greater abundance of the mapped element.

The Mg content increased significantly in the endosperm under saline soil, while
Cl content increased in embryo, and perisperm and decreased in the endosperm. Sulfur
content differed between soil salinities. It was stored mainly in the embryo in non-saline
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conditions, meanwhile, it accumulated more and perisperm in saline soil (6.3 and 3 times,
respectively). Nitrogen was detected only in the cotyledons, endosperm, and perisperm,
reducing their content in the last two tissues under salinity conditions. Silicon, Fe, Br, Al,
and Cu were below the detection limit for embryo, endosperm, and perisperm as for Na,
they are detected only in pericarp.

3. Discussion

The high salinity soils of Sah El Tina have not produced harmful effects on the quinoa
crop cultivation (cv. CICA-17). As a halophyte, the plant displayed a series of physiological
and morphological adaptations that allowed it to complete its cycle [35–39]. Saline soils
affect grain yield and seed size, according to previous research [40,41]. In our case, we
detected a decrease near 47% compared to the yield get in non-saline conditions. The
weight of 1000 seeds decreased by 13% in saline soil, and only smaller grains (< 1.68 mm)
were favored. From a commercial point of view, this finding is also essential because
markets prefer large grains instead of small ones.

Regardless of the soil’s saline conditions where quinoa was grown, the most abundant
minerals in the quinoa grains were Si, K, P, Mg, Ca, Na, Mn, Fe, Cu, Al, and Zn. However,
an increase in P, Na, and Mg contents was observed due to soil salinity. Sodium, an
essential mineral in the cell ionic balance, was detected only in the pericarp and not in other
tissues (embryo, endosperm, and perisperm). It is evident that the pericarp structure (with
different cell layers) is a shield to prevent the entry of sodium to the underlying tissues,
but not for the chlorides that increased in saline conditions. Contradictorily, the mineral
content of Mg and Mn was reduced by salinity in saline-sodic soils in Greece [42]. However,
the salinity conditions of that field experiment are low (6.5 dS m−1) in comparison to our
experiment (26 dS m−1) (Table 1). It is necessary to consider that 26 dS/m is the starting
value of the saline soil’s electrical conductivity (EC). It probably increases during the life
cycle because of the soil and water quality used (with high EC). So we can assume that EC is
further increased during cultivation, and the seeds were produced under more significant
saline stress conditions than the starting one. This hypothesis must be verified in future
studies in the field.

Regarding the occurrence of certain minerals in quinoa, it is necessary to consider
whether the analyses are performed on grains (pericarp + embryo) or only in seeds (without
pericarp). The desaponification process removes the pericarp and probably all the elements
specifically present in this tissue (Table 4) This feature is mentioned in many cases where
the analysis was performed on flour, but it is not clear whether the grains used contained
the pericarp or not. Our results showed that Na was only in the pericarp, Mg was present
in the pericarp, embryo, endosperm, and perisperm. While S was found in all the tissues,
P was only absent in the perisperm. All these features should be considered to prepare
quinoa-based foods since the product will not have the same mineral composition based
on whether or not it is desaponified. It is important to point out that saponins are present
in different quinoa organs (leaves, flowers, fruits, and seeds), especially in seed coats
(pericarp). Saponins must be removed by different methods (physical or chemical) to
avoid conferring a bitter flavor to the quinoa products. In general, saponin concentration
ranges from 0.01 to 5% on a dry weight basis [43,44]. There are no data concerning saponin
concentration in the quinoa crop of Egypt. However, González et al. [45] observed that
saponin content in CICA -17, grown in desert climatic conditions in a high valley in
Northwest Argentina, varied from 2.3 to 6.9% according to different nitrogen treatments.
Considering that saponins can increase their concentration under saline condition [29], we
can conclude that desaponification must be a necessary process before consuming quinoa
either as grain or as flour because the maximum acceptable level of saponin in quinoa for
human consumption varies from 0.06 to 0.12% [46,47]. Besides, desaponification removes
sodium from the grain, avoiding its potential negative effects when consumed.

Except for Sn, Ni, and As, already found by Prado et al. (2014), the other ultratrace
mineral elements (Rb, Sn, Th, Nd, Pr, Nb, Sm, Ni, Y, La, Ce, As, Ti, Ge, V, Zr, Ga, Zn, Ba, and
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Pb) were first detected in quinoa in both non-saline and saline conditions. The presence of
Cs was reported [48], but it was observed in aboveground parts of plants (stem and leaves).
For many trace and ultratrace minerals detected in quinoa, the cellular level function is
unknown, and their presence is only a passive accumulation from the soil and irrigation
water. The role of Cr, Li, Si, Ni in human metabolism was already demonstrated [49,50].
Chromium participates in protein transport and improves diabetes [51], while Li is an
essential element for regulating the central nervous system [52]. Following our results,
Li has also been found in quinoa and amaranth (Amaranthus caudatus) consumed as food
in the Northwest of Argentina [53]. Silicon is essential for Ca assimilation, the formation
of new cells, and tissue nutrition [54], and Ni is necessary for the proper functioning of
the pancreas [55]. Regarding arsenic, which is dangerous in high concentrations, several
studies suggest too that it probably plays a physiological role in the metabolism of methio-
nine, acting as an effector of acid metabolism amino sulfur [56]. Aluminum is typically
considered a toxic element, but some studies in vitro suggest that this element plays an
essential role in different biological systems (e.g., DNA synthesis stimulation or bone
formation) [57].

In summary, quinoa can be considered a source of minerals as Cr, Li, Si, Ni, As, and
Al concerning nutritious food and health. Besides, considering that quinoa foliage can
accumulate some minerals such Ni, Cr, Cu, and Cd [24] and the hyperaccumulation of
heavy metals in roots [58], we hypothesize that this species may be a good alternative for
the remediation of contaminated soils.

4. Materials and Methods
4.1. Plant Material, Site Description, and Experimental Design

Grains of CICA-17 quinoa cultivar were selected for this study. Field experiments
were conducted in 2015/2016 (mid-November to end-March) in two places in Egypt. One
was in the Sahl El-Tina plain (named saline in this work), located in the northwestern coast
of Sinai Peninsula (31◦ 02′ N, 32◦ 35′ E), and other in the Experimental Station (named
non-saline) of Ain Shams University, Cairo (30◦ 03′ N, 31◦ 14′ E). Both places are arid, with
an average annual precipitation of 60 mm yr−1 (Sahl El-Tina) and 20 mm yr−1 (Cairo), with
rainfall concentrated between October and April. The average monthly temperature was
20.5, 12.8, 16.7 ◦C and 21.7, 12.1, 16.9 ◦C for maximum, minimum, and mean temperature in
saline and non-saline places during the crop cycle, respectively. Representative soil samples
in both locations were collected in the center of each plot at 0.60 m depth. Soil samples
(6 in total) were obtained with a soil borer. Samples were mixed in the lab, and physical
and chemical analyses were performed according to the standard methods published by
Page et al. (1982) [59]. Results are listed in Table 1.

Experimental soils were prepared, including the construction of ridges. Compost
with a rate of 8 t ha−1 and phosphorus at a 120 kg P2O5 ha−1 was added during the land
preparation. Nitrogen was added as side-dressing at 160 kg N ha−1 in two equal rates after
30 and 51 days from the sowing date. Potassium was added at a rate of 140 kg K2O ha−1 at
the flowering stage. Seeds of quinoa were sterilized with sodium hypochlorite solution (5%
active chloride) for 10 min and then washed with distilled water several times and dried
with tissue paper before planting. We sowed about ten seeds per hill to ensure germination.
A complete randomized block design with six replicates (experimental plots) was used,
with an average of 18 m2 for each plot (6 ridges with 5 m length and 0.6 m width). After
four weeks from the sowing date, the seedlings were thinned to two or three seedlings per
hill. Local sources provided irrigation water in both places, and Table 2 lists their chemical
properties. A detailed description of the procedure is in Eisa et al. (2017) [16].

4.2. Yield Components

Ten quinoa plants in each experimental plot were cut and air-dried for 7–10 days at the
harvesting stage. The dried panicles were threshed by hand. Subsequently, we determined
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the grain yield (kg ha−1), the seed sizes, and the weight of 1000 seeds (g). The percentage
of grain sizes was determined with sieves of different meshes.

4.3. Mineral Content

The grain samples were dried in an oven at 65 ◦C to constant weight. The dried
samples were ground into a fine powder, passed through a 60-mesh sieve, and ashed
(electric oven at 575 ◦C for 16 h). After cooling, ash subsamples (0.1 g) were digested
with 10 mL of HF/HClO4/HNO3 (5.0/2.5/2.5, v/v) mixture in a closed teflon vessel
(Savillex, Canada) at 90 ◦C for at least 12 h. Once digestion finished, the remaining acid
was evaporated on a hotplate to incipient dryness. Next, 1 mL of HNO3 was added
twice and was evaporated again to incipient dryness. Residual sediment was dissolved in
HNO3 (1 mL) and transferred into a 100 mL volumetric flask. The digestion vessel was
rinsed with deionized water several times, and washing water was also transferred to
the volumetric flask. Flask volume was made up with deionized water and then used for
chemical element analysis. A total of 49 elements, including major (e.g., Ca, K, Mg, Na, and
P), minor (e.g., Zn, Fe, Cu. Mn, Co, and Na), and ultratrace mineral elements (e.g., Cr, Li,
As, Ni. Mo, Se, Sn, and V) were quantitatively determined by high resolution inductively
coupled plasma mass spectrometry (Element XR HR-ICP-MS, Thermo Scientific, Germany)
at the labGEOTOP of institute Geosciences Barcelona (Spanish Research Council, CSIC,
Barcelona, Spain) [37]. Quality control of element determinations was carried out using
internal standards and control samples of known composition for each analyzed element
(BDH Chemical, England). Of the 49 elements analyzed, only 34 were listed because the
rest (15 elements) were lower than the equipment’s detection limit. Element concentration
(mean of 3 repetitions) was expressed on a dry weight (dw) basis (Table 1). The accuracy
and precision of analytical determinations by HR-ICP-MS were lower than 10%.

4.4. Mineral Spatial Distribution

To determine the spatial distributions and relative abundances of C, O, N, Na, K, Ca,
Mg, P, Cl, Cu, Br, Al, Fe, Si, and S, three samples of achenes per saline and non-saline
locations were analyzed by scanning electron microscopy (SEM, Supra55VP) coupled to
an energy dispersive X-ray analyzer (EDX). SEM-EDX conditions were −10 ◦C, sample
chamber pressure of −50 Pa, accelerating voltage of 20 kV). These analyses were con-
ducted at CIME facilities (Integral Center of Electronic Microscopy of CONICET-UNT,
Tucumán, Argentina).

Complete grains (to study pericarps), seeds with manually removed pericarp (to
expose the seed coat), and median longitudinal sections of whole grains (cut with a blade)
were mounted and fixed with a commercial adhesive on sample plates. Maps of mineral
distribution were made in the median longitudinal sections. Semi-quantitative analyses
of mineral abundance were obtained from equivalent areas of different tissues or organs
(pericarp, episperm, endosperm, perisperm, embryo, and cotyledon mesophyll).

4.5. Statistical Analysis

The mean values between treatments per tissue/organs were compared using the
t-test at p ≤ 0.05 level of probability (statistical package SPSS Inc., version 11.0, Chicago,
IL, USA).

5. Conclusions

This study demonstrated the high resilience of the CICA-17 variety of quinoa to two
contrasting edaphic situations in Egypt. It was clear that mineral concentration can change
when interacting with different soil types, irrigation waters, and other environmental
conditions. Soil salinity induces substantial changes in the distribution of minerals in the
different grain tissues. Although quinoa is a significant source of major minerals such as
K, P, Mg, Ca, and Na, the contents of Si, Ni, Cr, and Li may be important for their healthy
behavior in human metabolism. The detection for the first time of 17 elements (Rb, Th, Nd,
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Pr, Nb, Sm, Y, La, Ce, Ti, Ge, V, Zr, Ga, Zn, Ba, and Pb) in quinoa seed add a new value to
quinoa crops as a potential application for phytoremediation processes. From our results,
we can conclude that cv. CICA-17 may be a complementary crop in the marginal lands of
high salinity in Egypt and the Mediterranean region, showing high potential concerning
healthy food and environmental issues as phytoremediation.
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