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Abstract:We present a general methodology to construct triplewise independent sequences of random vari-

ables having a common but arbitrary marginal distribution F (satisfying very mild conditions). For two spe-

ci�c sequences, we obtain in closed form the asymptotic distribution of the sample mean. It is non-Gaussian
(and depends on the speci�c choice of F). This allows us to illustrate the extent of the ‘failure’ of the classi-

cal central limit theorem (CLT) under triplewise independence. Our methodology is simple and can also be

used to create, for any integer K, new K-tuplewise independent sequences that are not mutually indepen-

dent. For K ≥ 4, it appears that the sequences created using our methodology do verify a CLT, and we explain

heuristically why this is the case.

Keywords: central limit theorem, graph theory,mutual independence, non-Gaussianasymptotic distribution,

triplewise independence, variance-gamma distribution

MSC: 62E20, 60F05, 60E10

1 Introduction
Independence is a fundamental concept in probability. When speaking of ‘independence’, one generally

means mutual independence, as opposed to pairwise independence, or, in general, ‘K-tuplewise indepen-

dence’ (K ≥ 2). Recall that a collection of random variables (de�ned on the same probability space) are mu-

tually independent, or just independent, if they are K-tuplewise independent for all positive integers K.
While mutual independence implies K-tuplewise independence (for any K), the converse is not true. For

the case K = 2 (‘pairwise independence’), several counterexamples can be found in the literature, see, e.g.,

Avanzi et al. [1] for a recent survey. For instance, one can de�ne the following simple example

X
3j+1 = Yj , X

3j+2 = Zj , X
3j+3 = YjZj for j = 0, 1, . . . (1.1)

where Y
0
, Z

0
, Y

1
, Z

1
, . . . are independent and identically distributed (i.i.d.) with P(Y

0
= 1) = P(Y

0
= −1) =

1/2. Building examples of K-tuplewise independent variables which are not mutually independent for K = 3

(henceforth ‘triplewise independence’) or K ≥ 4 is not easy, and such examples are scarce. This may explain

why we still have an incomplete understanding of which fundamental theorems of mathematical statistics

‘fail’ under this weaker assumption (and to what extent). By a well known result of Etemadi [10], the classical

strong law of large numbers does hold for any pairwise independent and identically distributed sequence

{Xn}n≥1 such that E|X
1
| < ∞.
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The same is not true, though, of the classical CLT, arguably one of the most important results in all of

statistics. Few authors have studied this question. Pruss [18] showed that, for any integer K, one can build a

sequence of K-tuplewise independent r.v.s for which no CLT holds. Bradley and Pruss [6] further showed that

even if such a sequence is strictly stationary, a CLTneednot hold.Weakley [22] extended thiswork by allowing

the r.v.s in the sequence to have any symmetrical distribution (with �nite variance). Takeuchi [20] showed that

K growing linearly with the sample size n is not even su�cient for a CLT to hold. In those examples, however,

the asymptotic distribution of the sample mean Sn is not given explicitly, hence we cannot judge to what

extent it departs from normality.

Kantorovitz [16] does provide an example of a triplewise independent sequence for which Sn converges to
a ‘misbehaved’ distribution —that of Z

1
· Z

2
, where Z

1
and Z

2
are independent N(0, 1) — but this is achieved

for a very speci�c choice of margin, namely the Bernoulli distribution.

In Section 2, we present a methodology, borrowing elements from graph theory, to construct new se-

quences of triplewise independent and identically distributed (noted thereafter t.i.i.d.) r.v.s whose common

marginal distribution F can be chosen arbitrarily (under very mild conditions). In Section 3, we provide a

necessary and su�cient condition for a CLT to hold for such sequences.

In Section 4,we providewhatwe believe to be the �rst two examples of triplewise independent sequences

with arbitrary margins for which the asymptotic distribution of the standardized sample mean is explicitly

known and non-Gaussian. Those two distributions depend on the choice of the margin F and have heavier

tails than a Gaussian. This allows us to assess how far away from the Gaussian distribution one can get under

sole triplewise independence. This work thus highlights whymutual independence is so fundamental for the

classical CLT to hold.

Lastly, in Section 5, we explain how our methodology can easily be extended to create new K-tuplewise

independent sequences (which are not mutually independent) for any integer K. While such sequences are

interesting in themselves, it appears that for K ≥ 4 they do verify a CLT, and we explain heuristically why

this is the case. Despite not being the focus of this paper, we note that these sequences could prove useful

to benchmark the performance of multivariate independence tests, many of which have been proposed in

recent years, see, e.g., Böttcher et al. [5], Chakraborty and Zhang [7], Drton et al. [9], Fan et al. [11], Genest

et al. [13], Jin and Matteson [15], Yao et al. [23].

2 Construction of triplewise independent sequences
In this section, we present a general methodology to construct sequences {Xj}j≥1 of t.i.i.d. r.v.s having a com-

mon (but arbitrary) marginal distribution F satisfying the following condition:

Condition 1. F has �nite variance and for any r.v. W ∼ F, there exists a Borel set A with P(W ∈ A) = `−1, where
` ≥ 2 is an integer.

We begin our construction of the sequence {Xj}j≥1 by letting F be a distribution satisfying Condition 1, with

mean and variance denoted by µ and σ2, respectively. For a r.v.W ∼ F, let A be any Borel set such that

P(W ∈ A) = `−1, for some integer ` ≥ 2. (2.1)

Our construction relies on a sequence of simple graphs {Gm}m≥1 with two properties:

1. The girth of Gm is 4 (or larger), for all m;

2. The number of edges of Gm grows to in�nity as m →∞.

Aside from these properties, the sequence {Gm}m≥1 is left unspeci�ed, making our construction very general.

As a concrete example, consider a complete bipartite graph composed of two sets of m vertices, where every

vertex from one set is linked by an edge to every vertex in the second set; see Figure 2.1 with m = 4 for an

illustration. Such graphs are often denoted by Km,m, see, e.g, Diestel [8, p.17].
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Figure 2.1: Graph K
4,4

with uniform r.v.s Mj , 1 ≤ j ≤ 8, de�ned in (2.2) assigned to the vertices. The vertices on the left (colored
in blue) belong to one set while the vertices on the right (colored in red) belong to another set.

Let v(m) be the number of vertices of Gm and let M
1
, . . . ,Mv(m) be a sequence of i.i.d. discrete uniforms

on the set {1, 2, . . . , `}, de�ned on a common probability space (Ω,F, P). Precisely, for i = 1, 2, . . . , `, let

pi := P(M
1
= i) = `−1. (2.2)

Assign the uniform r.v.sM
1
, . . . ,Mv(m) to the v(m) vertices of the graph (the order does not matter). Then, for

every pair (i, j), 1 ≤ i < j ≤ v(m) such that an edge connects Mi and Mj, de�ne a r.v. Di,j as

Di,j =
{
1, if Mi = Mj ,

0, otherwise.

(2.3)

Let n be the total number of edges. For convenience, we relabel the n random variables in the sequence {Di,j}
simply as

D
1
, . . . , Dn . (2.4)

We de�ne Ξn to be the number of 1’s in the sequence {Dk}1≤k≤n, and ξn its standardized version, i.e.,

Ξn =
n∑
k=1

Dk , ξn =
Ξn − n`−1√
n`−1(1 − `−1)

. (2.5)

The sequence D
1
, . . . , Dn is triplewise independent (see Remark 2.1) and from it we now construct a new

triplewise independent sequence X
1
, . . . , Xn such that Xk ∼ F, for all k = 1, . . . , n. De�ne U and V, with

cumulative distribution functions FU and FV respectively, to be the truncated versions ofW, respectively o�

and on the set A:
U law

= W|{W ∈ Ac}, V law

= W|{W ∈ A}, (2.6)

and denote

µU := E[U], σ2U := Var[U], µV := E[V], σ2V := Var[V]. (2.7)

Then, consider n independent copies of U, and independently, n independent copies of V:

U
1
, U

2
, . . . , Un i.i.d.∼ FU , V

1
, V

2
, . . . , Vn i.i.d.∼ FV , (2.8)

both de�ned on the probability space (Ω,F, P). Finally, for ω ∈ Ω and for all k = 1, . . . , n, construct

Xk(ω) =
{
Uk(ω), if Dk(ω) = 0,

Vk(ω), if Dk(ω) = 1.

(2.9)

By conditioning on Dk, it is easy to verify that

FXk (x) = (1 − `−1)FUk (x) + `−1FVk (x) = F(x). (2.10)
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Lastly, it is not hard to see that X
1
, . . . , Xn is triplewise independent. Indeed, for any given k, k′, k′′ ∈

{1, 2, . . . , n} with k, k′, k′′ all di�erent, the r.v.s Dk, Uk, Vk, Dk′ , Uk′ , Vk′ , Dk′′ , Uk′′ , Vk′′ are mutually in-

dependent and one can write Xk = g(Dk , Uk , Vk), Xk′ = g(Dk′ , Uk′ , Vk′ ) and Xk′′ = g(Dk′′ , Uk′′ , Vk′′ ) for
g a Borel-measurable function. Since Xk, Xk′ and Xk′′ are integrable, the result follows from the triplewise

independence analogue of Corollary 2 in Pollard [17, Section 4.1].

Remark 2.1. In Condition 1, the restriction P(W ∈ A) = `−1 for some integer `may seem arbitrary. Likewise, in
(2.2) the choice pi = `−1 for i = 1, . . . , ` may also seem arbitrary. We establish here that none of these choices
are arbitrary. Indeed, assume �rst that the only restriction on p

1
, p

2
, . . . , p` ∈ (0, 1) is that

(1) : p
1
+ p

2
+ · · · + p` = 1,

(2) : p2
1
+ p2

2
+ · · · + p2` = w,

(3) : p3
1
+ p3

2
+ · · · + p3` = w

2

,

(4) : p4
1
+ p4

2
+ · · · + p4` = w

3

.

(2.11)

for some w ∈ (0, 1). Condition (1) is necessary for the distribution in (2.2) to be well-de�ned, and conditions (2),
(3) and (4) are rewritings of

P(Dv
1
,v

2

= 1) = w, (2.12)

P(Dv
1
,v

2

= 1, Dv
2
,v

3

= 1) = P(Dv
1
,v

2

= 1)P(Dv
2
,v

3

= 1), (2.13)

P(Dv
1
,v

2

= 1, Dv
2
,v

3

= 1, Dv
3
,v

4

= 1) = P(Dv
1
,v

2

= 1)P(Dv
2
,v

3

= 1)P(Dv
3
,v

4

= 1), (2.14)

∀ (v
1
, v

2
), (v

2
, v

3
), (v

3
, v

4
) ∈ Edges(Gm).

(Indeed, the edges on the path v
1
v
2
. . . vk all have the value 1 if and only if all the corresponding values on

the vertices, Mv
1

,Mv
2

, . . . ,Mvk , are equal. With ` possible choices for each vertex, this event has probability
P(Dvj−1 ,vj = 1 ∀j ∈ {2, 3, . . . , k}) =

∑`
i=1
∏k
j=1 P(Mj = i) =

∑`
i=1 p

k
i ∀k ∈ N.) Note that the conditions (2.12),

(2.13) and (2.14) are su�cient to guarantee that the D’s are identically distributed and triplewise independent.
Now, the solution pi = `−1 to (2.11) is unique. Indeed, by squaring condition (2) in (2.11) then applying the Cauchy-
Schwarz inequality, one gets

w2

=

(∑̀
i=1

p3/2i p1/2i
)
2

≤

∑̀
i=1

p3i
∑̀
i=1

pi =
∑̀
i=1

p3i (2.15)

where the last equality comes from condition (1) in (2.11). Then, condition (3) requires that we have the equality
in (2.15), and this happens if and only if p3/2

i = λp1/2

i for all i ∈ {1, . . . , `} and for some λ ∈ R. In turn, this
implies pi = λ = `−1 because of (1) and since pi > 0, which then implies w = `−1 by (2). This unique solution
also satis�es (4), so this reasoning shows that we cannot extend our method to an arbitrary P(W ∈ A) ∈ (0, 1)

in (2.1).

3 Main result
We now state our main result, which links the asymptotic distribution of the standardized mean of the se-

quence {Xj}1≤j≤n to that of ξn in (2.5). This result holds for any growing sequence of simple graphs {Gm}m≥1
of girth at least 4 (as de�ned previously). Speci�c examples are given in the next section.

Theorem 3.1. Let X
1
, . . . , Xn be random variables de�ned as in (2.9). Provided that there exists a r.v. Y such

that
ξn law−→ Y , as m →∞ (and thus as n →∞), (3.1)

then the standardized sample mean Sn :=
(∑n

k=1 Xk − nµ
)
/σ
√
n converges in law to the random variable

S(`) :=
√
1 − r2Z + r Y , (3.2)

where Z ∼ N(0, 1) and r :=
√

`−1(1−`−1)(µV−µU )
σ .
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Remark 3.1. If r ≠ 0 and ξn is asymptotically non-Gaussian (this happens for certain graphs {Gm}m≥1, see
the next section for examples), then Sn is asymptotically non-Gaussian. Note that the restriction r ≠ 0 is not
stringent, as it includes all distributions F (in Condition 1) with a non-atomic part. Indeed, if W ∼ F has a
non-atomic part, then W has a non-atomic part on either (E[W], ∞) or (−∞,E[W]). Without loss of generality,
assume that the non-atomic part is on (E[W], ∞), then we can �nd an integer ` ≥ 2 and a Borel set A

0
such that

P(W ∈ A) = `−1 with A = (E[W], ∞) ∩ A
0
. By construction, this yields

E[W|A] > E[W] = E[W1A] + E[W1Ac ] = E[W|A] `−1 + E[W|Ac] (1 − `−1), (3.3)

so that E[W|A] > E[W|Ac]. The restriction r ≠ 0 also includes almost all discrete distributions with at least one
weight of the form `−1; see Remark 2 in Avanzi et al. [1] for a formal argument. Also, note that, depending on F,
many choices for A (with possibly di�erent values of `) could be available.

Remark 3.2. If the margin F satis�es Condition 1, and if r = 0 (i.e., µU = µV) or ξn is asymptotically Gaussian,
then our construction provides new triplewise independent (but not mutually independent) sequences which do
satisfy a CLT (regardless of which graphs {Gm}m≥1 are used).

Proof of Theorem 3.1. We prove (3.2) by obtaining the limit of the characteristic function of Sn, and then by

invoking Lévy’s continuity theorem. Namely, we show that, for all t ∈ R,

φSn (t)
m→∞−→ φ√

1−r2Z(t) · φrY (t). (3.4)

Recall the notation de�ned in (2.7) and let

Ũk :=
σU
σ ·

Uk − µU
σU

and Ṽk :=
σV
σ ·

Vk − µV
σV

, (3.5)

then we can write

Sn =
∑n

k=1 Xk − nµ
σ
√
n

=

∑n
k=1
Dk=0

Uk +
∑n

k=1
Dk=1

Vk − nµ

σ
√
n

=

1√
n

(
(n − Ξn)µU + ΞnµV − nµ

σ +

n∑
k=1
Dk=0

Uk − µU
σ +

n∑
k=1
Dk=1

Vk − µV
σ

)

=

1√
n

(
(µV − µU)

σ

[
Ξn − n

(µ − µU)
µV − µU

]
+

n∑
k=1
Dk=0

Ũk +
n∑
k=1
Dk=1

Ṽk

)

=

1√
n

(
r
(
Ξn − n`−1

)√
`−1(1 − `−1)

+

n∑
k=1
Dk=0

Ũk +
n∑
k=1
Dk=1

Ṽk

)
,

(3.6)

since Ξn = #{k : Dk = 1}, and we know that, from (2.10),

µ − µU
µV − µU

=

[(1 − `−1)µU + `−1µV ] − µU
µV − µU

= `−1. (3.7)

With the notation tn := t/
√
n, themutual independence between the Uk’s, the Vk’s andM := {Mj}v(m)j=1 yields,

for all t ∈ R,

E
[
eitSn |M

]
= e

itr (Ξn−n`−1)√
n`−1(1−`−1)

n∏
k=1
Dk=0

E[eitn Ũk |M]

n∏
k=1
Dk=1

E[eitn Ṽk |M]

= eitr ξn [φŨ(tn)]
n(1−`−1)

[φṼ (tn)]
n`−1
[φṼ (tn)
φŨ(tn)

]Ξn−n`−1
= eitr ξn · [φŨ(tn)]

n(1−`−1)
[φṼ (tn)]

n`−1
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·

 [φṼ (tn)]n · e 1

2

·

σ2V
σ2
t2

[φŨ(tn)]n · e
1

2

·

σ2U
σ2
t2


Ξn−n`−1

n

·

 e− 1

2

·

σ2V
σ2
t2

e−
1

2

·

σ2U
σ2
t2


Ξn−n`−1

n

. (3.8)

(The reader should note that, for n large enough, the manipulations of exponents in the second and third

equality above are valid because the highest powers of the complex numbers involved have their principal

argument converging to 0. This stems from the fact that Ξn ≤ n, and the quantities [φṼ (tn)]
n
and [φṼ (tn)]

n

both converge to real exponentials as n →∞, by the CLT.) We now evaluate the four factors on the right-hand

side of (3.8). For the �rst factor in (3.8), the continuous mapping theorem and (3.1) yield

eitr ξn law−→ eitrY , as m →∞. (3.9)

For the second factor in (3.8), the classical CLT yields

[φŨ(tn)]
n(1−`−1)

[φṼ (tn)]
n`−1 m→∞−→ exp

(
−

1

2

· (1 − `−1)
σ2U
σ2 t

2

)
exp

(
−

1

2

· `−1
σ2V
σ2 t

2

)
= e−

1

2

(1−r2)t2
,

(3.10)

where in the last equality we used the fact that, from (2.10),

σ2 = E[X2] − µ2 = (1 − `−1)σ2U + `−1σ2V + `−1(1 − `−1)(µU − µV )2. (3.11)

For the third factor in (3.8), the quantity inside the bracket converges to 1 by the CLT. Hence, the elementary

bound

|ez − 1| ≤ |z| +
∞∑
j=2

|z|j
2

≤ |z| + |z|2
2(1 − |z|) ≤

1 + `−1

2`−1
|z|, for all |z| ≤ 1 − `−1, (3.12)

and the fact that

∣∣ Ξn−n`−1
n

∣∣
≤ 1 − `−1 yield, as m →∞,∣∣∣∣∣∣∣∣∣

 [φṼ (tn)]n · e 1

2

·

σ2V
σ2
t2

[φŨ(tn)]n · e
1

2

·

σ2U
σ2
t2


Ξn−n`−1

n

− 1

∣∣∣∣∣∣∣∣∣
a.s.

≤

1 − `−2

2`−1

∣∣∣∣∣∣∣Log
 [φṼ (tn)]n · e 1

2

·

σ2V
σ2
t2

[φŨ(tn)]n · e
1

2

·

σ2U
σ2
t2


∣∣∣∣∣∣∣ −→ 0. (3.13)

For the fourth factor in (3.8), we note that

Ξn−n`−1
n

P−→ 0 (because of the law of large numbers for pairwise

independent r.v.s). Then, by the continuous mapping theorem, e− 1

2

·

σ2V
σ2
t2

e−
1

2

·

σ2U
σ2
t2


Ξn−n`−1

n

P−→ 1, as m →∞. (3.14)

By combining (3.9), (3.10), (3.13) and (3.14), Slutsky’s lemma implies, for all t ∈ R,

E
[
eitSn |M

]
law−→ eitrYe−

1

2

(1−r2)t2
, as m →∞. (3.15)

Since the sequence {|E[eitSn |M]|}m∈N is uniformly integrable (it is bounded by 1), Theorem 25.12 in [4] shows

that we also have the mean convergence

E
[
E
[
eitSn |M

]]
−→ E

[
eitrY

]
e−

1

2

(1−r2)t2
, as m →∞, (3.16)

which proves (3.4). The conclusion follows.
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4 Examples
In Theorem 3.1, whether the standardized sample mean Sn is asymptotically Gaussian depends on the ‘con-

nectivity’ of the chosen graphs {Gm}m≥1. In particular, it appears that having graphs of bounded diameter

is a necessary (albeit not su�cient) condition for Sn to be asymptotically non-Gaussian. To make this point

explicit, we present two speci�c examples for which we obtain the (non-Gaussian) asymptotic distribution of

ξn (via Theorem 3.1, this also provides the asymptotic distribution of Sn). We present a third example where

the limiting distribution is Gaussian.

4.1 First example

Theorem 4.1. Let {Gm}m≥1 be the sequence of bipartite graphs {Km,m}m≥1 described above Figure 2.1, and
consider the construction from Section 2 where i.i.d. discrete uniforms M

1
, . . . ,M

2m are assigned to the vertices
of Gm. That is, M1

, . . . ,Mm are assigned to the m vertices of set 1, and Mm+1, . . . ,M2m to the m vertices of set
2. Then,

ξn law−→ ξ√
` − 1

, as m →∞ (and thus as n →∞), (4.1)

where ξ ∼ VG(` − 1, 0, 1, 0), and VG denotes the variance-gamma distribution (see De�nition A.1).

Remark 4.1. Because a standardizedVG(`−1, 0, 1, 0) distribution converges to a standardGaussian as ` tends
to in�nity, we see that, in Theorem 3.1, S(`) law−→ N(0, 1) as `→∞.

Proof. First, note that v(m) = 2m and n = m2

. De�ne, for i ∈ {1, 2, . . . , `},

N(1)

i = N(1)

i (m), the number of Mj’s equal to i within the sample {Mj}mj=1,

N(2)

i = N(2)

i (m), the number of Mj’s equal to i within the sample {Mj}2mj=m+1.

Then, N(j)
:= (N(j)

1

, . . . , N(j)
` ) ∼ Multinomial(m, (`−1, . . . , `−1)) for j ∈ {1, 2}, and N(1)

and N(2)

are indepen-

dent. Importantly, if N(1)

and N(2)

are known, then the number of 1’s in the sequence {Dk}1≤k≤n, denoted by

Ξn throughout, can be deduced from simple calculations as

Ξn =
∑̀
i=1

N(1)

i N(2)

i =

`−1∑
i=1

N(1)

i N(2)

i +

(
m −

`−1∑
i=1

N(1)

i
)(
m −

`−1∑
i′=1

N(2)

i′
)

=

`−1∑
i=1

N(1)

i N(2)

i +

`−1∑
i=1

`−1∑
i′=1

N(1)

i N(2)

i′ − m
`−1∑
i=1

N(1)

i − m
`−1∑
i′=1

N(2)

i′ + m2

=

`−1∑
i=1

(N(1)

i − m`−1)(N(2)

i − m`−1) +

`−1∑
i=1

`−1∑
i′=1

(N(1)

i − m`−1)(N(2)

i′ − m`−1)

+ m`−1
`−1∑
i=1

N(1)

i + m`−1
`−1∑
i=1

N(2)

i + (` − 1)m`−1
`−1∑
i=1

N(1)

i + (` − 1)m`−1
`−1∑
i=1

N(2)

i

− m
`−1∑
i=1

N(1)

i − m
`−1∑
i=1

N(2)

i − (` − 1)m2`−2 − (` − 1)2m2`−2 + m2

=

`−1∑
i=1

(N(1)

i − m`−1)(N(2)

i − m`−1) +

`−1∑
i=1

`−1∑
i′=1

(N(1)

i − m`−1)(N(2)

i′ − m`−1) + m2`−1

= m`−1
`−1∑
i=1

`−1∑
i′=1

(
1

`−1
1{i=i′} +

1

`−1

)
(N(1)

i − m`−1)
√
m

(N(2)

i − m`−1)
√
m

+ m2`−1, (4.2)

where 1B denotes the indicator function on the set B. It is well known that the covariance matrix for the

�rst ` − 1 components of a Multinomial(m, (p
1
, p

2
, . . . , p`)) vector is mΣ where Σi,i′ = pi1{i=i′} − pipi′ , for
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1 ≤ i, i′ ≤ ` − 1, and also that (Σ−1)i,i′ = p−1i 1{i=i′} + p−1` , 1 ≤ i, i′ ≤ ` − 1, see Tanabe and Sagae [21, eq.

21]. If Σ = LL> is the Cholesky decomposition of Σ when pi = `−1 for all i, and Y
1
:= (N(1)

i − m`−1)`−1i=1 and

Y
2
:= (N(2)

i − m`−1)`−1i=1 , then we have

Ξn − m2`−1 = m`−1Y>
1
(mΣ)−1Y

2

= m`−1(m−1/2L−1Y
1
)

>
(m−1/2L−1Y

2
).

(4.3)

By the classical multivariate CLT and De�nition A.1 in Appendix A, we get the result.

Next, we illustrate what the asymptotic distribution of Sn (the standardized sample mean) looks like in this

example. By Theorem 3.1, Sn converges in law to a r.v.

S(`) law=
√
1 − r2Z + r ξ√

` − 1
, (4.4)

where the r.v.s Z ∼ N(0, 1) and ξ ∼ VG(` − 1, 0, 1, 0) (see De�nition A.1 in Appendix A) are independent.

For a �xed ` ≥ 2, the distribution of S(`) has only oneparameter, r (de�ned in Theorem3.1),whichdepends

on the margin F (through the quantities A, µU , µV and σ). Note that 0 ≤ r2 ≤ 1, and that the critical points

r2 = 0, 1 are reachable for certain choices of F, see Section 4 and Appendix A in Avanzi et al. [1] for speci�c

examples.

Hence, when ` ≥ 2 is �xed, r completely determines the shape of S(`); r close to 0 means that S(`) is
close to a standard Gaussian, while r close to ±1 means that S(`) is close to a standardized VG(` − 1, 0, 1, 0).

Figure 4.2 (where ` = 2 and r varies) illustrates this shift from a Gaussian distribution towards a VG(` −

1, 0, 1, 0) distribution. On the other hand, regardless of r, if ` increases then S(`) gets closer to a N(0, 1).
This is illustrated in Figure 4.3 (where r = 0.99 and ` varies). It is clear from these �gures that triplewise

independence can be a very poor substitute to mutual independence as an assumption in the classical CLT.
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Figure 4.2: Density (left) and c.d.f. (right) of S(`) for �xed ` = 2 and varying r (r = 0.6, 0.8, 0.99), compared to those of a
N(0, 1). This illustrates that the CLT can ‘fail’ substantially under triplewise independence.

Figure 4.3: Density (left) and c.d.f. (right) of S(`) for �xed r = 0.99 and varying ` (` = 2, 4, 6), compared to those of a N(0, 1).
This illustrates that S(`) converges to a N(0, 1) as ` grows.

Lastly, the �rst moments of S(`) (obtained with simple calculations in Mathematica) are

E[S(`)] = 0, E[(S(`))2] = 1, E[(S(`))3] = 0 and E[(S(`))4] = 6r4
` − 1

+ 3. (4.5)

Thus, an upper bound on the kurtosis of S(`) is 6/(` − 1) + 3, which implies that the limiting r.v. S(`) can be

substantially more heavy-tailed than the standard Gaussian distribution (which is also seen in Figure 4.2).

4.2 Second example

Consider the sequence of graphs {Gm}m≥1 as displayed in Figure 4.4 form = 6, whereM
0
,M

1
,M

2
, . . . ,Mm+1

is a sequence of i.i.d. Bernoulli(1/2) r.v.s assigned to the vertices. For each m, the graph Gm has v(m) = m + 2
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vertices and n = 2m edges. Every vertex in the set {M
1
,M

2
, . . . ,Mm} (in the middle) is linked by an edge to

the adjacent vertices M
0
(on the left) and Mm+1 (on the right). This sequence of graphs yields Theorem 4.2.

M0 M7M1

M2

M3

M4

M5

M6

Figure 4.4: Illustration of the graph G
6
in our second example.

Theorem 4.2. Let {Gm}m≥1 be the sequence of graphs described above and consider the construction from
Section 2 where Condition 1 is satis�ed with ` = 2. Then,

ξn law−→
√
2I · Z, as m →∞ (and thus as n →∞), (4.6)

where the random variables I ∼ Bernoulli(1/2) and Z ∼ N(0, 1) are independent.

Proof. If I ∼ Bernoulli(1/2) and B ∼ Binomial(m, 1/2) are independent r.v.s, then Ξn satis�es

Ξn law

= I · 2B + (1 − I) · m. (4.7)

Indeed, if the Bernoulli r.v.s M
0
and Mm+1 are equal (this is represented by I = 1 in (4.7), which has prob-

ability 1/2), then for every vertex M
1
,M

2
, . . . ,Mm in the middle, the sum of the 1’s on the two adjacent

edges will be 2 with probability 1/2 and 0 with probability 1/2. By the independence of the Bernoulli r.v.s

M
1
,M

2
, . . . ,Mm, we can thus represent the sum of the “m sums of 1’s” that we just described by 2B where

B ∼ Binomial(m, 1/2). Similarly, if the Bernoulli r.v.sM
0
andMm+1 are not equal (this is represented by I = 0

in (4.7), which has probability 1/2), then for every vertex M
1
,M

2
, . . . ,Mm in the middle, the sum of the 1’s

on the two adjacent edges will always be 1 (either the left edge is 1 and the right edge is 0, or vice-versa,

depending on whether (M
0
= 1,Mm+1 = 0) or (M

0
= 0,Mm+1 = 1)). Since there are m vertices in the middle

when I = 0, the total sum of the 1’s on the edges is always m. By combining the cases I = 1 and I = 0, we get

the representation (4.7).

Lastly, here E[Ξn] = m and Var(Ξn) = m
2

so that, by Lévy’s continuity theorem,

ξn =
Ξn − m√m

2

=

√
2I · B − m/2√m

4

law−→
√
2I · Z, where Z ∼ N(0, 1). (4.8)

This ends the proof.

Remark 4.2. By Theorem 3.1, Sn converges in law to a random variable:

S :=
√
1 − r2Z

1
+ r
√
2IZ

2
, (4.9)

where the random variables Z
1
, Z

2
∼ N(0, 1) and I ∼ Bernoulli(1/2) are all independent, and r := µV−µU

2σ .
Simple calculations then yield

E[S] = 0, E[S2] = 1, E[S3] = 0 and E[S4] = 3(1 + r4), (4.10)
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so that S in (4.9) is always heavier tailed than a standard Gaussian r.v. (provided r ≠ 0, which is not a stringent
requirement as seen in Remark 3.1).

4.3 Third example

In our construction, a CLT can hold. As a ‘positive example’, we consider here the sequence of m-hypercube

graphs, which have v(m) = 2

m
vertices and n = m2m−1 edges. Despite being ‘highly connected’, these graphs

do induce a Gaussian limit for {Sn}n≥1.

Theorem 4.3. Let {Gm}m≥1 be the sequence of m-hypercube graphs and consider the construction from Sec-
tion 2 where Condition 1 is satis�ed with ` = 2. Then, ξn is asymptotically Gaussian as m → ∞ (and thus as
n →∞).

Proof. First, note that each vertex of Gm can be represented by a binary vector of m components. To be clear

here, the hypercube graphs are all embedded in the same in�nite dimensional hypercube graph, and the

same goes for the Bernoulli r.v.s M
1
,M

2
, . . . ,M

2
m assigned to the vertices. By de�nition of the m-hypercube

graph, (i, j) is an edge if and only if i and j di�er by only one binary component, which we write i ∼ j for
short. In particular, we write i ∼d j if i and j di�er only in the d-th binary component, where 1 ≤ d ≤ m. With

Ξn and Di,j de�ned as in (2.4) and (2.3), respectively, it will be useful here to work instead with the zero-mean

r.v.s, Ξ̃n and D̃i,j, de�ned as

Ξ̃m = 2 Ξn − n =
∑
i∼j

D̃i,j , and D̃i,j = 2Di,j − 1 =

{
1, if Mi = Mj ,

−1, otherwise.

(4.11)

We will prove below that Ξ̃m is asymptotically Gaussian, which implies that ξn is as well. We have the follow-

ing decomposition:

Ξ̃m =

m∑
d=1

Ξ̃(d)m , where Ξ̃(d)m :=

∑
i∼d j

D̃i,j . (4.12)

Let Gd = σ(D̃i,j : i ∼d j), and let Fm := σ(∪md=1Gd) be the smallest σ-algebra containing the sets of all the

Gd’s, for 1 ≤ d ≤ m. Then, F = {Fm}m∈N
0

is a �ltration, where we de�ne F
0
:= {∅, Ω}. We have the following

preliminary result (we complete the proof of Theorem 4.3 right after).

Lemma 4.4. If Ξ̃
0
:= 0, then for every m ∈ N

0
, the process {Ξ̃k/

√
Var(Ξ̃m)}

0≤k≤m is a zero-mean and bounded

F-martingale with di�erences Ξ̃(d)m /

√
Var(Ξ̃m), 1 ≤ d ≤ m.

Proof of Lemma 4.4. The process {Ξ̃m}m∈N
0

is trivially F-adapted and integrable. To conclude that it is a F-
martingale, it is su�cient to show that

E[Ξ̃(k)m |Fk−1] = 0, for all 1 ≤ k ≤ m. (4.13)

By symmetry of the construction, the case k = 1 is trivial (i.e., E[Ξ̃(1)m ] = 0). Therefore, assume that k ≥ 2.

Consider any instance ω ∈ Ω for the values of the Bernoulli r.v.s on the vertices of the m-hypercube such

that

∑k−1
d=1 Ξ̃

(d)
m (ω) = s and Ξ̃(k)m (ω) = t, where s, t are any speci�c integer values. For every such instance ω,

there exists a ‘conjugate’ instance ω where

∑k−1
d=1 Ξ̃

(d)
m (ω) = s and Ξ̃(k)m (ω) = −t. Indeed, take the con�guration

ω, then for every vertex that has its k-th binary component equal to 1, �ip the result of the Bernoulli r.v. (0

under ω becomes 1 under ω, and 1 under ω becomes 0 under ω). Since the Bernoulli r.v.s on the vertices are

i.i.d., and the values 0 and 1 are equiprobable, note that P({ω}|Fk−1)(u) = P({ω}|Fk−1)(u) for all u ∈ Ω such

that

∑k−1
d=1 Ξ̃

(d)
m (u) = s. Therefore, for any summand of the form Ξ̃(k)m (ω) · P({ω}|Fk−1)(u) in the calculation of

E[Ξ̃(k)m |Fk−1](u), it will always be cancelled by Ξ̃(k)m (ω) · P({ω}|Fk−1)(u). Since we assumed nothing on s, we

must conclude that E[Ξ̃(k)m |Fk−1] = 0.
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Aside from Lemma 4.4, we also have the following three properties related to the increments of the process{
Ξ̃k/
√

Var(Ξ̃m)
}
0≤k≤m:

(a) max
1≤d≤m

Ξ̃(d)m√
Var(Ξ̃m)

P−→ 0. Indeed, by a union bound and Markov’s inequality with exponent 4, we have, for

any ε > 0,

P

(
max

1≤d≤m

∣∣∣∣ Ξ̃(d)m√
Var(Ξ̃m)

∣∣∣∣ > ε
)
≤ m · P

(∣∣∣∣ Ξ̃(1)m√
Var(Ξ̃m)

∣∣∣∣ > ε
)
≤ m ·

E
[
(Ξ̃(1)m )

4

]
ε4m2

(
E
[
(Ξ̃(1)m )

2

])
2

≤

C
ε4m

m→∞−→ 0,

where C > 0 is a universal constant.

(b) By the weak law of large numbers for weakly correlated r.v.s with �nite variance, and the fact that Var(Ξ̃m) =
mVar(Ξ̃(d)m ) = mE[(Ξ̃(d)m )

2

] for all 1 ≤ d ≤ m, we have

m∑
d=1

(Ξ̃(d)m )

2

Var(Ξ̃m)
=

1

m

m∑
d=1

(Ξ̃(d)m )

2

E[(Ξ̃(d)m )
2

]

P−→ 1, as m →∞.

(c) E
[
max

1≤d≤m
(Ξ̃(d)m )

2

Var(Ξ̃m)

]
is bounded in m. Indeed,

E
[
max

1≤d≤m

(Ξ̃(d)m )

2

Var(Ξ̃m)

]
≤

E
[∑m

d=1(Ξ̃
(d)
m )

2

]
Var(Ξ̃m)

=

Var(Ξ̃m)
Var(Ξ̃m)

= 1 < ∞.

By Lemma 4.4, (a), (b), (c), and the central limit theorem formartingale arrays [14, Theorem 3.2], we conclude

that

Ξ̃m√
Var(Ξ̃m)

law−→ N(0, 1), as m →∞.¹ (4.14)

This ends the proof of Theorem 4.3.

4.4 Fourth example

Anadditional example of a sequence of ‘highly connected’ graphs still inducing aGaussian limit can be found

in Section 4.4 of the arXiv version of the present paper, available at https://arxiv.org/abs/2104.02292.

5 The general case K ≥ 4

One can easily adapt the methodology presented in this paper to build new sequences of K-tuplewise inde-

pendent randomvariables (with an arbitrarymargin F). Indeed, all oneneeds to do is �nda growing sequence

of simple graphs of girth K + 1 ≥ 5 and then, as before, put i.i.d. discrete uniforms on the vertices and assign

1’s to edges for which the r.v.s on the adjacent vertices are equal. A girth of K + 1 guarantees K-tuplewise

independence of the sequences hence created. An arbitrary margin F can be obtained as before by de�ning

sequences {Uj}j≥1 and {Vj}j≥1 as in (2.8), and then creating the �nal sequence {Xj}j≥1 as in (2.9).

Whether or not sequences created this way will satisfy a CLT is a di�erent (and di�cult) question. In

[2], the author constructs explicitly an in�nite collection of simple connected regular graphs of girth 6 and

diameter 3, which we denote by Gq, where the index q runs over the possible prime powers. These graphs

1 Approximately four days after we came up with this proof, Yuval Peres provided an interesting and completely di�erent proof

of (4.14) (not using martingales) in the following MathStackExchange post:

https://math.stackexchange.com/questions/3993902/central-limit-theorem-for-dependent-bernoulli-random-variables-on-the-

edges-of-a.

https://arxiv.org/abs/2104.02292
https://math.stackexchange.com/questions/3993902/central-limit-theorem-for-dependent-bernoulli-random-variables-on-the-edges-of-a
https://math.stackexchange.com/questions/3993902/central-limit-theorem-for-dependent-bernoulli-random-variables-on-the-edges-of-a
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are obtained as the incidence graphs of projective planes of order q = k − 1. For any given prime power

q, the graph Gq is (q + 1)-regular and has 2 · (q2 + q + 1) vertices. In particular, it is a (k, 6)-cage because

the number of vertices achieves the Moore (lower) bound, see, e.g., Biggs [3, Chapter 23]. This extremely

uncommon sequence of graphs would be the perfect candidate for our construction to display a limiting

non-Gaussian law for the normalized sum Sn. Indeed, in addition to having a minimal number of vertices,

these graphs Gq also have a constant (and �nite) diameter, which means that we do not have strong mixing

of the binary random variables Dj assigned to the edges (strong mixing is the most common assumption for

a CLT with dependent random variables, see, e.g., Rosenblatt [19]). However, even in this context where the

edges’ dependence is, in a sense, maximized (because of the constant diameter and the minimal number of

vertices), our simulations show that we cannot reject the hypothesis of a Gaussian limit for S. We applied the

following normality tests with q = 2

6

(which corresponds to a sample of size n = (q+1)(q2+q+1) = 270,465)

and 5,000 samples:

test Shapiro-Wilk Anderson-Darling Pearson chi-square
test statistic 0.9997 0.2993 67.9360
p-value 0.7148 0.5846 0.7602

For the interested reader, the code is provided as supplementary material of this paper.

Remark 5.1. There seems to be a link between the fact that examples of asymptotic non-normality of {Sn}n≥1
exist for K ≤ 3 (girth g ≤ 4) but not for K ≥ 4 (girth g ≥ 5), and the fact that there exists growing sequences of
regular graphs Gm of girth g ≤ 4 where

lim inf

m→∞
degree(Gm)

# of vertices of Gm
> 0, (5.1)

(the lim infn→∞ here is certainly a measure of the connectivity of the graphs Gm’s), whereas we always have

lim

m→∞
degree(Gm)

# of vertices of Gm
= 0,

for regular graphs of girth g ≥ 5, see, e.g., Biggs [3, Proposition 23.1]. This dichotomy in the statistics context
(and its link to graph theory) seems to be a completely new and promising observation.

Remark 5.2. In contrast to the sequence of graphs in our �rst example (Section 4.1), the sequence of hypercube
graphs in our third example (Section 4.3) do not satisfy (5.1). The property (5.1) in a sense measures the con-
nectivity of the graphs, and therefore the level of dependence between the r.v.s Di,j assigned to the edges in our
construction. Since (5.1) cannot be satis�ed for K ≥ 4 when the underlying graphs are regular, the third example
reinforces our intuition that, for K ≥ 4, the sequence {ξn}n≥1 (and thus Sn) will always converge to a Gaussian
random variable.

A The variance-gamma distribution
De�nition A.1. The variance-gamma distribution with parameters α > 0, θ ∈ R, s > 0, c ∈ R has the density
function

f (x) := 1

s
√
πΓ(α/2)

e
θ
α2
(x−c)

(
|x − c|

2

√
θ2 + s2

)α−1
2

K α−1
2

(√
θ2 + s2
s2 |x − c|

)
, x ∈ R, (A.1)

where Kν is the modi�ed Bessel function of the second kind of order ν. If a certain random variable X has this
distribution, then we write X ∼ VG(α, θ, s2, c).

We have the following result, which is a consequence (for example) of Theorem 1 in [12].
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Lemma A.2. Let W
1
,W

2
, . . . ,Wn

i.i.d.∼ N(0, s2) and Z
1
, Z

2
, . . . , Zn i.i.d.∼ N(0, s2) be two independent se-

quences, then Qn :=

∑n
i=1WiZi ∼ VG(n, 0, s2, 0), following De�nition A.1, and the density function of Qn is

given by

fQn (x) =
1

s2
√
πΓ(n/2)

(
|x|
2s2

)n−1
2

K n−1
2

(
|x|
s2

)
, x ∈ R. (A.2)

It is easy to verify that the characteristic function of Qn is given by

φQn (t) = (1 + s4t2)−n/2, t ∈ R, (A.3)

and the expectation and variance are given by

E[Qn] = 0 and Var[Qn] = n s4. (A.4)

Supplementary Material: The online version of this article (DOI: https://doi.org/10.1515/demo-2021-0120)

provides the computing R codes as supplementary material.
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