THE GLOBAL ACTIVITY OF CATEGORY 5 TROPICAL CYCLONES (1980-2017)

Karl Hoarau,¹ Johnny Chan,² Mark Lander,³ Chip Guard,⁴ Roger Edson,⁴

¹Cergy-Pontoise University, France.
² City University of Hong Kong, China.
³ University of Guam, USA.
⁴ National Weather Service, Guam, USA.

WC Climate Change Sep 13-15, 2018, Rome, Italy

 The category 5 cyclones produce sustained winds at 140 knots and gusts at more than 170 knots.

- Some cyclones like Haiyan (2013), Irma (2017) or Maria (2017) have been treated in the media as a direct consequence of global warming.
- Model projections found an increase in the number of the very intense cyclones (125 knots and more) late in this century (Knutson et al., 2015).

Is there already an increase in the global number of the category 5 cyclones ?

1 – The variation of number of category 5 cyclones.

2 – Possible explanations.

Part 1

The variation of number of category 5 cyclones

Category 5 Hurricane Maria in the northern Atlantic on 19 september 2017 at 17h45 UTC

Source: Naval Research Laboratory, Monterey.

Comparison between the archives data (IBTrACS, International Best Track Archives for Climate Stewardship) and the reanalysis data in the global number of category 5 cyclones

The decadal number of category 5 cyclones from 1980 to 2017 in the different oceans

The change in the number of category 5 cyclones for the 19-years periods 1980-1998 and 1999-2017 in the different oceans

The annual number of category 5 cyclones from 1980 to 2017

Part 2

Possible explanations

The averaged number per year of category 5 cyclone during the 5 strongest El Niño and La Niña.

		Averaged number per year		
Niño	Niña	38 years		
8.2	1.8	4.3		
0.6	1.8	1.0		
0.0	1.0	0.4		
8.8	4.6	5.7		
	8.2 0.6 0.0 8.8	Nino Nina 8.2 1.8 0.6 1.8 0.0 1.0 8.8 4.6		

The time series of Pacific Decadal Oscillation (PDO), EL Niño, and La Niña indices from 1980 to 2014.

Source: Sharmila and Walsh (2018).

Source: NOAA Hurricane Research Division

The change of location for 2 main dynamical factors of cyclone genesis in the western North Pacific during the El Niño and La Niña events

Source: from Chan (2008), and Liu and Chan (2013).

Conclusion

- There is not yet an increase in the global number of Cat 5 cyclones.
- The interannual and multidecadal variations seem still to be the main factors of the strongest cyclones activity.
- The current warming of oceans is not yet sufficient to have a significant influence on the intense cyclones.

