Predicting shear force in wheelchair at body-seat interface with machine learning - Dynamique des capacités humaines et des conduites de santé Accéder directement au contenu
Communication Dans Un Congrès Année : 2022

Predicting shear force in wheelchair at body-seat interface with machine learning

Résumé

Since both normal and shear forces are of importance in pressure ulcer formation, the purpose of the study is to develop and validate a model able to provide total shear forces estimated from Machine Learning results based on FSA parameters. Thus, with a single tool pressure measurement such as FSA, total shear forces could be studied in future work.
Fichier principal
Vignette du fichier
ris00002109.pdf (628.57 Ko) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03863463 , version 1 (06-12-2022)

Identifiants

  • HAL Id : hal-03863463 , version 1

Citer

Clémence Paquin, Olivier Chenu, Anthony Gelis, Laura Dubuis, Sonia Duprey. Predicting shear force in wheelchair at body-seat interface with machine learning. SB 2022, 47eme Congrès de la Société de Biomécanique, Oct 2022, Monastir, Tunisia. pp S242-S244. ⟨hal-03863463⟩
33 Consultations
23 Téléchargements

Partager

Gmail Facebook X LinkedIn More